If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15p^2+80p=80=0
We move all terms to the left:
15p^2+80p-(80)=0
a = 15; b = 80; c = -80;
Δ = b2-4ac
Δ = 802-4·15·(-80)
Δ = 11200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11200}=\sqrt{1600*7}=\sqrt{1600}*\sqrt{7}=40\sqrt{7}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-40\sqrt{7}}{2*15}=\frac{-80-40\sqrt{7}}{30} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+40\sqrt{7}}{2*15}=\frac{-80+40\sqrt{7}}{30} $
| 7/2=4x; | | 1540=(x+30)14 | | -130+15x=170-5x | | 1/3x+10=24 | | 1/5c=-5 | | 9k-6-k=-7k-6 | | 8.78+0.02x=11.03 | | x.12=36 | | 3v^2+22v+49=0 | | x×12=36 | | 5=6y; | | c×12=36 | | 20.65+x=25.41 | | 1/3x+15=24 | | 3640=35(p+20) | | (10x+5)+55=180 | | 4x+4=2x-6+16 | | 180=5x+16 | | 82x=6,232 | | 180=4x-18 | | 37.57+x=86.61 | | 11x-6=21x | | -20y-28=-4y-40 | | 8.16+x=9.45 | | 2y/5+3y/5=8+3. | | 8•1x=0 | | 46+-1+8x=18+5 | | 24=50+(-1y) | | x/9+5=19 | | 3x+36=-2x-4 | | 4x+4=9-(21) | | (7x+5)(3x-5)=0 |